A fuzzy-based lifetime extension of genetic algorithms

نویسندگان

  • Mark Last
  • Shay Eyal
چکیده

In knowledge discovery, Genetic Algorithms have been used for classification, model selection, and other optimization tasks. However, behavior and performance of genetic algorithms are directly affected by the values of their input parameters, while poor parameter settings usually lead to several problems such as the premature convergence. Adaptive techniques have been suggested for adjusting the parameters in the process of running the genetic algorithm. None of these techniques have yet shown a significant overall improvement, since most of them remain domain-specific. In this paper, we attempt to improve the performance of genetic algorithms by providing a new, fuzzy-based extension of the LifeTime feature. We use a Fuzzy Logic Controller (FLC) to adapt the crossover probability as a function of the chromosomes’ age. The general principle is that for both young and old individuals the crossover probability is naturally low, while there is a certain age interval, where this probability is high. The concepts of “young”, “old”, and “middle-aged” are modeled as linguistic variables. This approach should enhance the exploration and exploitation capabilities of the algorithm, while reducing its rate of premature convergence. We have evaluated the proposed Lifetime methodology on several benchmark problems by comparing its performance to the basic genetic algorithm and to several adaptive genetic algorithms. The results of our initial experiments demonstrate a clear advantage of the fuzzy-based Lifetime extension over the “crisp” techniques. © 2004 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coverage Improvement In Wireless Sensor Networks Based On Fuzzy-Logic And Genetic Algorithm

Wireless sensor networks have been widely considered as one of the most important 21th century technologies and are used in so many applications such as environmental monitoring, security and surveillance. Wireless sensor networks are used when it is not possible or convenient to supply signaling or power supply wires to a wireless sensor node. The wireless sensor node must be battery powered.C...

متن کامل

Energy-Saving in Wireless Sensor Networks Based on Optimization Sink Movement Control

A sensor network is made up of a large number of sensors with limited energy. Sensors collect environmental data then send them to the sink. Energy efficiency and thereby increasing the lifetime of sensor networks is important. Direct transfer of the data from each node to the central station will increase energy consumption. Previous research has shown that the organization of nodes in cluster...

متن کامل

Fuzzy decision in testing hypotheses by fuzzy data: Two case studies

In testing hypotheses, we may confront with cases where data are recorded as non-precise (fuzzy) rather than crisp. In such situations, the classical methods of testing hypotheses are not capable and need to be generalized. In solving the problem of testing hypotheses based on fuzzy data, the fuzziness of the observed data leads to the fuzzy p-value. This paper has been focused to calculate fuz...

متن کامل

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Multi-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms

Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2005